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ON THE WITTEN RIGIDITY THEOREM
FOR STRINGc MANIFOLDS

JIANQING YU AND BO LIU

We establish family rigidity and vanishing theorems on the equivariant K -
theory level for the Witten type operators on stringc manifolds introduced
by Chen, Han, and Zhang.

1. Introduction

Witten [1988] derived a series of elliptic operators on the free loop space LM of a
spin manifold M . In particular, the index of the formal signature operator on the
loop space turns out to be exactly the elliptic genus constructed by Landweber and
Stong [1988] and Ochanine [1987] in a topological way. Motivated by physics,
Witten proposed that these elliptic operators should be rigid with respect to the
circle action.

This claim of Witten was first proved by Taubes and Bott [Taubes 1989; Bott and
Taubes 1989]. See also [Hirzebruch 1988; Krichever 1990] for other interesting
cases. Using the modular invariance property, Kefeng Liu [1995; 1996] presented a
simple and unified proof of the above result as well as various further generalizations.
In particular, Liu established several new vanishing theorems.

Chen, Han, and Zhang [Chen et al. 2011] introduced a topological condition
which they called the stringc condition for even-dimensional spinc manifolds. Under
this stringc condition, they constructed a Witten type genus which is the index of
a Witten type operator, a linear combination of twisted spinc Dirac operators.
Furthermore, by applying Liu’s method [1995; 1996], Chen, Han, and Zhang
established the rigidity and vanishing theorems for this Witten type operator under
the relevant anomaly cancellation condition; see [Chen et al. 2011, Theorem 3.2].

In many situations in geometry, it is rather natural and necessary to generalize
the rigidity and vanishing theorems to the family case. On the equivariant Chern
character level, Liu and Ma [2000; 2002] established several family rigidity and
vanishing theorems. In [Liu et al. 2000; Liu et al. 2003], inspired by [Taubes 1989],
Liu, Ma, and Zhang established the corresponding family rigidity and vanishing
theorems on the equivariant K -theory level. As explained in [Liu et al. 2000; Liu
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et al. 2003], taking the Chern character might kill some torsion elements involved in
the index bundle. Therefore, the rigidity and vanishing properties on the K -theory
level are more subtle than those on the Chern character level.

The purpose of this paper is to establish the family rigidity and vanishing theorems
on the equivariant K -theory level for the Witten type operators introduced in [Chen
et al. 2011]. In fact, our main results in Theorem 2.2 may be regarded as an
analogue of [Liu et al. 2000, Theorem 2.1; Liu et al. 2003, Theorems 2.1 and 2.2].
In particular, if the base manifold is a point, from our family rigidity theorem, one
deduces [Chen et al. 2011, Theorem 3.2(i)]. Both the statement and the proof of
Theorem 2.2 are inspired by those of [Liu et al. 2000, Theorem 2.1; Liu et al. 2003,
Theorems 2.1 and 2.2], which essentially depend on the techniques developed by
Taubes [1989] and Bismut and Lebeau [1991].

This paper is organized as follows. In Section 2, we state (in Theorem 2.2) and
prove our main results, providing rigidity and vanishing for the family Witten type
operators introduced in [Chen et al. 2011]. Section 3 is devoted to the proofs of
two intermediate results, Theorems 2.8 and 2.9, which are used in the proof of
Theorem 2.2.

2. Rigidity and vanishing theorems in K -theory

In this section, we establish the main results of this paper, the rigidity and vanishing
theorems on the equivariant K -theory level for a family of spinc manifolds. Such
theorems hold under some anomaly cancellation assumption which is inspired by
the stringc condition from [Chen et al. 2011]. For the particular case when the base
manifold is a point, our results imply Theorem 3.2(i) of that reference.

This section is organized as follows. In Section 2A, we reformulate a K -theory
version of the equivariant family index theorem which is proved in [Liu et al. 2003,
Theorem 1.2; Liu et al. 2000, Theorem 1.1]. In Section 2B, we state our main
results, the rigidity and vanishing theorems on the equivariant K -theory level for a
family of spinc manifolds. In Section 2C, we state two intermediate results on the
relations between the family indices on the fixed point set, which are used to prove
our main results stated in Section 2A. In Section 2D, we prove the family rigidity
and vanishing theorems.

2A. A K-theory version of the equivariant family index theorem. Let M , B be
two compact manifolds, and π : M → B a smooth fibration with compact fiber
X such that dim X = 2l. Let TX denote the relative tangent bundle carrying
a Riemannian metric gTX . We assume that TX is oriented. Let (W, hW ) be a
complex Hermitian vector bundle over M .

Let (V, gV ) and (V ′, gV ′) be oriented real Euclidean vector bundles over M ,
of respective dimensions 2p and 2p′. Let (L , hL) be a complex Hermitian line
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bundle over M with the property that the vector bundle U = TX ⊕V ⊕V ′ satisfies
ω2(U )= c1(L) mod 2, where ω2 denotes the second Stiefel–Whitney class, and
c1 denotes the first Chern class. Then the vector bundle U has a spinc-structure.
Let S(U, L) be the fundamental complex spinor bundle for (U, L); see [Lawson
and Michelsohn 1989, Appendix D].

Assume that there is a fiberwise S1-action on M which lifts to V , V ′, L , and W ,
and assume the metrics gTX , gV , gV ′ , hL , and hW are S1-invariant. Also assume
that the S1-actions on TX , V , V ′, L lift to S(U, L).

Let ∇TX be the Levi–Civita connection on (TX, gTX ) along the fiber X . Let
∇

V and ∇V ′ be S1-invariant Euclidean connections on (V, gV ) and (V ′, gV ′), re-
spectively. Let ∇L and ∇W be S1-invariant Hermitian connections on (L , hL) and
(W, hW ), respectively.

The Clifford algebra bundle C(TX) is the bundle of Clifford algebras over X
whose fiber at x ∈ X is the Clifford algebra C(Tx X); see [Lawson and Michel-
sohn 1989]. Let C(V ) and C(V ′) be the Clifford algebra bundles of (V, gV ) and
(V ′, gV ′).

Let {ei }
2l
i=1 and { f j }

2p
j=1 be oriented orthonormal bases for (TX, gTX ) and (V, gV ),

respectively. We denote by c(·) the Clifford action of C(TX), C(V ), and C(V ′) on
S(U, L). Let τ be the involution of S(U, L) given by

(2-1) τ = (
√
−1)l+pc(e1) · · · c(e2l)c( f1) · · · c( f2p).

In the rest of the paper, we say that τ is the involution determined by TX ⊕ V .
We decompose S(U, L) = S+(U, L) ⊕ S−(U, L) corresponding to τ such that
τ |S±(U,L) =±1. Let ∇S(U,L) be the Hermitian connection on S(U, L) induced by
∇

TX , ∇V , ∇V ′ , and ∇L ; see [Lawson and Michelsohn 1989, Appendix D]. Then
∇

S(U,L) preserves the Z2-grading of S(U, L) induced by (2-1). Let ∇S(U,L)⊗W be
the Hermitian connection on S(U, L)⊗W obtained from the tensor product of
∇

S(U,L) and ∇W . Let DX
⊗W be the family twisted spinc-Dirac operator on the

fiber X defined by

(2-2) DX
⊗W =

2l∑
i=1

c(ei )∇
S(U,L)⊗W
ei

.

By [Liu and Ma 2000, Proposition 1.1], the index bundle Indτ (DX
⊗W ) over B is

well-defined in the equivariant K -group KS1(B). Using the same notations as in
[Liu et al. 2003, (1.4)–(1.7)], we write, as an identification of virtual S1-bundles,

(2-3) Indτ (DX
⊗W )=

⊕
n∈Z

Indτ (DX
⊗W, n)⊗[n],

where by [n] (n ∈ Z) we mean the one-dimensional complex vector space on which
S1 acts as multiplication by gn for a generator g ∈ S1.
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Let F = {Fα} be the fixed point set of the circle action on M . Then π : Fα→ B
(respectively π : F→ B) is a smooth fibration with fiber Yα (respectively Y ). Let
π̃ : N → F denote the normal bundle to F in M . Then N = TX/T Y . We identify
N as the orthogonal complement of T Y in TX |F . Then TX |F admits the following
S1-equivariant decomposition (see [Liu et al. 2003, (1.8)]):

(2-4) TX |F =
⊕
v 6=0

Nv ⊕ T Y,

where Nv is a complex vector bundle such that g∈ S1 acts on it by gv with v ∈ Z\{0}.
Clearly, N =

⊕
v 6=0 Nv . We regard N as a complex vector bundle and write NR for

the underlying real vector bundle of N . For v 6= 0, let Nv,R denote the underlying
real vector bundle of Nv.

Similarly, let (see [Liu et al. 2003, (1.9) and (1.46)])

(2-5) V |F =
⊕
v 6=0

Vv ⊕ V R
0 , V ′|F =

⊕
v 6=0

V ′v ⊕ V ′R0 , W |F =
⊕
v

Wv,

be the S1-equivariant decompositions of the restrictions of V , V ′, and W over F ,
respectively, where Vv , V ′v , and Wv (v ∈ Z) are complex vector bundles over F on
which g ∈ S1 acts by gv, and V R

0 and V ′R0 are the real subbundles of V and V ′,
respectively, such that S1 acts as identity. For v 6= 0, let Vv,R and V ′v,R denote the
underlying real vector bundles of Vv and V ′v . Write 2p0 = dim V R

0 and 2l0 = dim Y .
Let us write (compare with [Liu et al. 2003, (1.47)])

(2-6) L F = L ⊗
( ⊗
v 6=0

det Nv ⊗
⊗
v 6=0

det Vv ⊗
⊗
v 6=0

det V ′v
)−1

.

Then T Y ⊕ V R
0 ⊕ V ′R0 has a spinc-structure. Let S(T Y ⊕ V R

0 ⊕ V ′R0 , L F ) be the
fundamental spinor bundle for (T Y⊕V R

0 ⊕V ′R0 , L F ). Let R be a Hermitian complex
vector bundle equipped with a Hermitian connection over F . We denote by DY

⊗ R
the family (twisted) spinc Dirac operator on S(T Y ⊕ V R

0 ⊕ V ′R0 , L F )⊗ R defined
as in (2-2) and by DYα ⊗ R its restriction to Yα.

Recall that Nv,R and Vv,R are canonically oriented by their complex structures.
The decompositions (2-4), (2-5) induce the orientations of T Y and V R

0 respectively.
Let {ei }

2l0
i=1, { f j }

2p0
j=1 be the corresponding oriented orthonormal basis of (T Y, gT Y )

and (V R
0 , gV R

0 ). The involution of S(T Y ⊕V R
0 ⊕V ′R0 , L F ) is canonically associated

to that of S(U, L), which we still denote by τ , which is given by

(2-7) τ = (
√
−1)l0+p0c(e1) · · · c(e2l0)c( f1) · · · c( f2p0).

Let S(T Y⊕V R
0 ⊕V ′R0 , L F )= S+(T Y⊕V R

0 ⊕V ′R0 , L F )⊕S−(T Y⊕V R
0 ⊕V ′R0 , L F )

be the Z2-grading of S(T Y ⊕ V R
0 ⊕ V ′R0 , L F ) induced by τ .
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Let C(NR) and C(Vv,R) be the Clifford algebra bundle of

(NR, gTX
|NR
) and Vv,R, gV

|Vv,R),

respectively. By [Liu et al. 2003, (1.10)], 3(N ∗) is a C(NR)-Clifford module with
the involution τ N

|3even/odd(N∗) =±1. Similarly to [Liu et al. 2003, (1.10)], we can
define the Clifford action of C(Vv,R) on3(Vv∗). Then3(Vv∗) is a C(Vv,R)-Clifford
module with the involution τ V

v |3even/odd(Vv∗) =±1.
By restricting to F , one has the isomorphism of Z2-graded C(TX)-Clifford

modules over F as follows (compare with [Liu et al. 2003, (1.49)]):

(2-8) (S(U, L), τ )
∣∣

F

'
(
S(T Y ⊕ V R

0 ⊕ V ′R0 , L F ), τ
)
⊗̂ (3N ∗, τ N ) ⊗̂

⊗̂
v 6=0
(3Vv∗, τ V

v ) ⊗̂
⊗̂
v 6=0
(3V ′v

∗, id),

where id denotes the trivial involution and ⊗̂ denotes the Z2-graded tensor product
(see [Lawson and Michelsohn 1989, p. 11]). Furthermore, the isomorphism (2-8)
gives the identifications of the canonical connections on the bundles (compare
with [Liu et al. 2003, (1.13)]).

Let S1 act on L|F by sending g ∈ S1 to glc (lc ∈ Z) on F . Then lc is locally
constant on F . Following [Liu et al. 2003, (1.50)], we define the following elements
in K (F)[[q1/2

]]:

(2-9) R(q)= q
1
2 (
∑
v |v|dim Nv−

∑
v v dim Vv−

∑
v v dim V ′v+lc)

⊗
v>0
(Symqv (Nv)⊗det Nv)

⊗
⊗
v<0

Symq−v (N v)⊗
⊗
v 6=0
3−qv (Vv)⊗

⊗
v 6=0
3qv (V ′v)⊗

(∑
v

qvWv

)
=
∑
n

Rnqn

and

(2-10) R′(q)= q1/2(−
∑
v |v| dim Nv−

∑
v v dim Vv−

∑
v v dim V ′v+lc)

⊗
v>0

Symq−v (N v)

⊗
⊗
v<0
(Symqv (Nv)⊗ det Nv)⊗

⊗
v 6=0

3−qv (Vv)

⊗
⊗
v 6=0

3qv (V ′v)⊗
(∑

v

qvWv

)
=
∑
n

R′nqn.

As explained in [Liu et al. 2003, p. 139], since TX ⊕ V ⊕ V ′⊕ L is spin, one
gets

(2-11)
∑
v

v dim Nv +
∑
v

v dim Vv +
∑
v

v dim V ′v + lc ≡ 0 mod 2.

Therefore, R(q), R′(q) ∈ K (F)[[q]].
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The following theorem was essentially proved in [Liu et al. 2003, Theorem 1.2].

Theorem 2.1. For n ∈ Z, the following identity holds in K (B):

(2-12) Indτ (DX
⊗W, n)=

∑
α

(−1)
∑

0<v dim Nv Indτ (DYα ⊗ Rn)

=

∑
α

(−1)
∑
v<0 dim Nv Indτ (DYα ⊗ R′n).

2B. Family rigidity and vanishing theorems. Let π : M → B be a fibration of
compact manifolds with compact fiber X and dim X = 2l. We assume that S1

acts fiberwise on M and TX has an S1-invariant spinc structure. Let K X be the
S1-equivariant complex line bundle over M which is induced by the S1-invariant
spinc structure of TX . Let S(TX, K X ) be the complex spinor bundle of (TX, K X );
see [Lawson and Michelsohn 1989, Appendix D].

Let V be an even-dimensional real vector bundle over M . We assume that V has
an S1-invariant spin structure. Let S(V )= S+(V )⊕ S−(V ) be the spinor bundle of
V . Let W be an S1-equivariant complex vector bundle over M . Let KW = det(W )

be the determinant line bundle of W .

We define the following elements in K (M)[[q1/2
]]:

R1(V )=
(
S+(V )+ S−(V )

)
⊗

∞⊗
n=1

3qn (V ),

R2(V )=
(
S+(V )− S−(V )

)
⊗

∞⊗
n=1

3−qn (V ),(2-13)

R3(V )=
∞⊗

n=1
3−qn−1/2(V ), R4(V )=

∞⊗
n=1

3qn−1/2(V ),

Q1(W )=
∞⊗

n=0
3qn (W )⊗

∞⊗
n=1

3qn (W )⊗
∞⊗

n=1
3−qn−1/2(W )

⊗

∞⊗
n=1

3−qn−1/2(W )⊗
∞⊗

n=1
3qn−1/2(W )⊗

∞⊗
n=1

3qn−1/2(W ).

For N ∈ Z, N ≥ 1, let y = e2π i/N
∈ C. Let G y be the multiplicative group

generated by y. Following [Witten 1988], as in [Liu et al. 2000, Section 2.1], we
consider the fiberwise action G y on W and W by sending y ∈ G y to y on W and
y−1 on W . Then G y acts naturally on Q1(W ).

Let H∗S1(M,Z) = H∗(M ×S1 E S1,Z) denote the S1-equivariant cohomology
group of M , where E S1 is the universal S1-principal bundle over the classifying
space BS1 of S1. So H∗S1(M,Z) is a module over H∗(BS1,Z) induced by the
projection π : M ×S1 E S1

→ BS1. Let p1(·)S1 denote the first S1-equivariant
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Pontryagin class and ω2(·)S1 the second S1-equivariant Stiefel–Whitney class. As
V ×S1 E S1 is spin over M ×S1 E S1, one knows that 1

2 p1(V )S1 is well-defined in
H∗S1(M,Z); see [Taubes 1989, pp. 456–457]. Recall that

(2-14) H∗(BS1,Z)= Z[[u]]

with u a generator of degree 2.
In the following, we denote by DX

⊗ R the family twisted spinc Dirac operator
acting fiberwise on S(TX, K X )⊗ R. Recall that if Ind(DX

⊗ R, n) vanishes for
n 6= 0, we say that DX

⊗ R is rigid on the equivariant K -theory level for the
S1-action.

Now we can state the main results of this paper, which can be thought of as
analogous to [Liu et al. 2000, Theorem 2.1].

Theorem 2.2. Assume w2(W )S1 = w2(TX)S1 , 1
2 p1(V + 3W − TX)S1 = e · π∗u2

(e ∈ Z) in H∗S1(M,Z), and c1(W ) = 0 mod N. For i = 1, 2, 3, 4, consider the
family of G y × S1-equivariant twisted spinc Dirac operators

(2-15) DX
⊗ (KW ⊗ K−1

X )1/2⊗

∞⊗
n=1

Symqn (TX)⊗ Ri (V )⊗ Q1(W ).

(i) If e = 0, these operators are rigid on the equivariant K -theory level for the
S1-action.

(ii) If e < 0, the index bundles of these operators are zero in KG y×S1(B). In
particular, these index bundles are zero in KG y (B).

Remark 2.3. As explained in [Liu et al. 2000, Remark 2.1], w2(W )S1 =w2(TX)S1

means that 1
2 p1(3W −TX)S1 is well defined and that c1(KW ⊗K−1

X )S1 = 0 mod 2.
By [Hattori and Yoshida 1976, Corollary 1.2], the S1-action on M can be lifted to
(KW ⊗ K−1

X )1/2 and is compatible with the S1-action on KW ⊗ K−1
X .

Take N = 1, that is, we forget the G y-action on W and remove the corresponding
assumption c1(W ) = 0 mod N . Furthermore, take W = K X and V = 0. Then
an interesting consequence of Theorem 2.2 is the following family rigidity and
vanishing property, which may be thought of as an extension of [Liu et al. 2003,
Theorem 2.3] to the spinc case. When the base manifold is a point, it turns out to
be exactly [Chen et al. 2011, Theorem 3.2(i)].

Corollary 2.4. Assume 1
2 p1(3K X − TX)S1 = e ·π∗u2 (e ∈ Z) in H∗S1(M,Z). Con-

sider the family of S1-equivariant twisted spinc Dirac operators

(2-16) DX
⊗

∞⊗
n=1

Symqn (TX)⊗ Q1(K X ).
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(i) If e = 0, these operators are rigid on the equivariant K -theory level for the
S1-action.

(ii) If e< 0, the index bundles of these operators are zero in KS1(B). In particular,
these index bundles are zero in K (B).

Remark 2.5. The operators in (2-16) are the Witten type operators introduced
in [Chen et al. 2011]. By taking N = 1, W = K X , V = 0, and letting the base
manifold B be a point in [Liu et al. 2000, Theorem 2.1], we get [Chen et al. 2011,
Theorem 3.2(ii)]. It is rather natural to establish an analogue of [Liu et al. 2000,
Theorem 2.1], which corresponds to [Chen et al. 2011, Theorem 3.2(i)]. That is
one of the motivations of Theorem 2.2.

Actually, as in [Liu et al. 2000; Liu et al. 2003], our proof of Theorem 2.2 works
under the following slightly weaker hypothesis. Let us first explain some notations.

For each n > 1, consider Zn ⊂ S1, the cyclic subgroup of order n. We have the
Zn-equivariant cohomology of M defined by

H∗Zn
(M,Z)= H∗(M ×Zn E S1,Z),

and there is a natural “forgetful” map

α(S1,Zn) : M ×Zn E S1
→ M ×S1 E S1

which induces a pullback

α(S1,Zn)
∗
: H∗S1(M,Z)→ H∗Zn

(M,Z).

We denote by α(S1, 1) the arrow which forgets the S1-action. Thus

α(S1, 1)∗ : H∗S1(M,Z)→ H∗(M,Z)

is induced by the inclusion of M into M ×S1 E S1 as a fiber over BS1.
Finally, note that if Zn acts trivially on a space Y , then there is a new arrow

t∗ : H∗(Y,Z)→ H∗Zn
(Y,Z) induced by the projection t :Y×Zn E S1

=Y×BZn→Y .
Let Z∞ = S1. For each 1< n ≤+∞, let i : M(n)→ M be the inclusion of the

fixed point set of Zn ⊂ S1 in M , and so i induces iS1 :M(n)×S1 E S1
→M×S1 E S1.

In the rest of this paper, we suppose that there exists some integer e ∈ Z such
that, for 1< n ≤+∞,

(2-17) α(S1,Zn)
∗
◦ i∗S1(

1
2 p1(V + 3W − TX)S1 − e ·π∗u2)

= t∗ ◦α(S1, 1)∗ ◦ i∗S1(
1
2 p1(V + 3W − TX)S1).

As indicated in [Liu et al. 2000, Remark 2.4], the relation (2-17) clearly follows
from the hypothesis of Theorem 2.2 by pulling back and forgetting. Thus it is a
weaker hypothesis.

We can now state a slightly more general version of Theorem 2.2.
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Theorem 2.6. Let the hypothesis be as in (2-17).

(i) If e = 0, the index bundles of the twisted spinc Dirac operators in Theorem 2.2
are rigid on the equivariant K -theory level for the S1-action.

(ii) If e < 0, the index bundles of the twisted spinc Dirac operators in Theorem 2.2
are zero as elements in KG y×S1(B), and, in particular, these index bundles are
zero in KG y (B).

The rest of this section is devoted to a proof of Theorem 2.6.

2C. Two recursive formulas. Let F = {Fα} be the fixed point set of the circle
action. Then π : F→ B is a fibration with compact fiber denoted by Y = {Yα}.

As in [Liu et al. 2000, (2.5)], we may and we will assume that

(2-18)
TX |F = T Y ⊕

⊕
v>0

Nv,

TX |F ⊗R C= T Y ⊗R C⊕
⊕
v>0
(Nv ⊕ N v),

where Nv are complex vector bundles on which S1 acts by sending g ∈ S1 to gv.
We also assume that (see [Liu et al. 2000, (2.6)])

(2-19) V |F = V R
0 ⊕

⊕
v>0

Vv, W |F =
⊕
v

Wv,

where Vv, Wv are complex vector bundles on which S1 acts by sending g to gv,
and V R

0 is a real vector bundle on which S1 acts as identity.
By (2-18), as in [Liu et al. 2000, (2.7)] , there is a natural isomorphism between

the Z2-graded C(TX)-Clifford modules over F ,

(2-20) S(TX, K X )|F ' S
(

T Y, K X ⊗
⊗
v>0
(det Nv)−1

)
⊗̂
⊗̂
v>0

3Nv.

For a complex vector bundle R over F , let DY
⊗ R and DYα ⊗ R be the twisted

spinc Dirac operators on S
(
T Y, K X

⊗
v>0(det Nv)−1)

)
⊗ R over F and Fα , respec-

tively.
We introduce the following locally constant functions on F (see [Liu et al. 2000,

(2.8)]):

e(N )=
∑
v>0

v2 dim Nv, d ′(N )=
∑
v>0

v dim Nv,

e(V )=
∑
v>0

v2 dim Vv, d ′(V )=
∑
v>0

v dim Vv,(2-21)

e(W )=
∑
v

v2 dim Wv, d ′(W )=
∑
v

v dim Wv.
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As in [Liu et al. 2000, (2.9)], we write

(2-22)

L(N )=
⊗
v>0
(det Nv)v, L(V )=

⊗
v>0
(det Vv)v,

L(W )=
⊗
v 6=0
(det Wv)

v, L = L(N )−1
⊗ L(V )⊗ L(W )3.

By using (2-17) and computing as in [Liu et al. 2000, (2.10)–(2.11)], we know that

(2-23) c1(L)= 0, e(V )+ 3 · e(W )− e(N )= 2e,

which means L is a trivial complex line bundle over each component Fα of F ,
and S1 acts on L by sending g to g2e, and G y acts on L by sending y to y3d ′(W ).
From [Liu et al. 2000, Lemma 2.1], we know that d ′(W )mod N is constant on each
connected component of M . Thus we can extend L to a trivial complex line bundle
over M , and we extend the S1-action on it by sending g ∈ S1 on the canonical
section 1 of L to g2e

· 1, and G y acts on L by sending y to y3d ′(W ).
In what follows, if R(q) =

∑
m∈ 1

2 Z qm Rm ∈ KS1(M)[[q1/2
]], we also denote

Ind(DX
⊗ Rm, h) by Ind(DX

⊗ R(q),m, h). For i = 1, 2, 3, 4, set

(2-24) Ri1 = (KW ⊗ K−1
X )1/2⊗ Ri (V )⊗ Q1(W ).

As in [Liu et al. 2000, Proposition 2.1], by using Theorem 2.1, we first express
the global equivariant family index via the family indices on the fixed point set.

Proposition 2.7. For m ∈ 1
2 Z, h ∈ Z, 1 ≤ i ≤ 4, we have the following identity in

KG y (B):

(2-25) Ind
(

DX
⊗

∞⊗
n=1

Symqn (TX)⊗ Ri1,m, h
)

=

∑
α

(−1)
∑
v>0 dim Nv Ind

(
DYα ⊗

∞⊗
n=1

Symqn (TX |F )⊗ Ri1

⊗Sym
(⊕
v>0

Nv
) ⊗
v>0

det Nv,m, h
)
.

To simplify the notation, we use the same convention as in [Liu et al. 2000,
p. 945]. For n0 ∈ N∗, we define a number operator P on KS1(M)[[q1/n0]] in the
following way: if R(q)=

⊕
n∈(1/n0)Z

Rnqn
∈ KS1(M)[[q1/n0]], P acts on R(q) by

multiplication by n on Rn . From now on, we simply denote Symqn (TX), 3qn (V ),
and 3qn (W ) by Sym(TXn), 3(Vn), and 3(Wn). In this way, P acts on TXn , Vn ,
and Wn by multiplication by n, and the action of P on Sym(TXn), 3(Vn), and
3(Wn) is naturally induced by the corresponding action of P on TXn , Vn , and Wn .
So the eigenspace of P=n is just given by the coefficient of qn of the corresponding
element R(q). For R(q) =

⊕
n∈(1/n0)Z

Rnqn
∈ KS1(M)[[q1/n0]], we also denote

Ind(DX
⊗ Rm, h) by Ind(DX

⊗ R(q),m, h).
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For p ∈ N, we introduce the following elements in KS1(F)[[q]] (see [Liu et al.
2000, (3.6)]):

(2-26)

Fp(X)=
∞⊗

n=1
Sym(T Yn)⊗

⊗
v>0

( ∞⊗
n=1

Sym(Nv,n)
⊗

n>pv
Sym(N v,n)

)
,

F′p(X)=
⊗
v>0

⊗
0≤n≤pv

(Sym(Nv,−n)⊗ det Nv),

F−p(X)= Fp(X)⊗F′p(X).

Then, from (2-18), over F , we have

(2-27) F0(X)=
∞⊗

n=1
Symqn (TX |F )⊗Sym

(⊕
v>0

Nv
)
⊗
⊗
v>0

det Nv.

We now state two intermediate results on the relations between the family indices
on the fixed point set. These two recursive formulas are used in the next subsection
to prove Theorem 2.6.

Theorem 2.8 (compare with [Liu et al. 2000, Theorem 2.3]). For 1 ≤ i ≤ 4, h,
p ∈ Z, p > 0, m ∈ 1

2 Z, the following identity holds in KG y (B):

(2-28)
∑
α

(−1)
∑
v>0 dim Nv Ind

(
DYα ⊗F0(X)⊗ Ri1,m, h

)
=

∑
α

(−1)pd ′(N )+
∑
v>0 dim Nv

× Ind
(
DYα ⊗F−p(X)⊗ Ri1,m+ 1

2 p2e(N )+ 1
2 pd ′(N ), h

)
.

The proof of Theorem 2.8 will be given in Sections 3B–3D.

Theorem 2.9 (compare with [Liu et al. 2000, Theorem 2.4]). For each α, 1≤ i ≤ 4,
h, p ∈ Z, p > 0, m ∈ 1

2 Z, the following identity holds in KG y (B):

(2-29) Ind
(
DYα ⊗F−p(X)⊗ Ri1,m+ 1

2 p2e(N )+ 1
2 pd ′(N ), h

)
= (−1)pd ′(W ) Ind(DYα ⊗F0(X)⊗ Ri1⊗ L−p,m+ ph+ p2e, h).

The proof of Theorem 2.9 will be given in Section 3A.

2D. A proof of Theorem 2.6.

Proof. As 1
2 p1(3W −TX)S1 ∈ H∗S1(X,Z) is well defined, one has the same identity

as in [Liu et al. 2000, (2.27)]:

(2-30) d ′(N )+ d ′(W )= 0 mod 2.

From Proposition 2.7, Theorems 2.8 and 2.9, and (2-30), for 1≤ i ≤ 4, h, p ∈ Z,
p > 0, m ∈ 1

2 Z, we get the following identity (compare with [Liu et al. 2000,
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(2.28)]):

(2-31) Ind
(

DX
⊗

∞⊗
n=1

Symqn (TX)⊗ Ri1,m, h
)

= Ind
(

DX
⊗

∞⊗
n=1

Symqn (TX)⊗ Ri1⊗ L−p,m′, h
)
,

with

(2-32) m′ = m+ ph+ p2e.

By (2-13) and (2-24), if m < 0 or m′ < 0, either side of (2-31) is identically zero,
which completes the proof of Theorem 2.6. In fact:

(i) Assume that e = 0. Let h ∈ Z, m0 ∈
1
2 Z, h 6= 0 be fixed. If h > 0, we take

m′ = m0. Then, for p large enough, we get m < 0 in (2-31). If h < 0, we take
m = m0. Then, for p large enough, we get m′ < 0 in (2-31).

(ii) Assume that e < 0. For h ∈ Z, m0 ∈
1
2 Z, we take m = m0. Then, for p large

enough, we get m′ < 0 in (2-31). �

Remark 2.10. We point out here that there is a Z/k version of Theorem 2.6, which
is an analogue of [Liu and Yu ≥ 2013, Theorem 4.4]. In fact, by using the mod k
localization formula for Z/k circle actions on Z/k spinc manifolds established in
[Liu and Yu ≥ 2013, Theorem 2.7] (see also [Zhang 2003, Theorem 2.1] for the
spin case), our proof of Theorem 2.6 can be applied to the case of Z/k manifolds
with little modification.

Remark 2.11 (compare with [Liu et al. 2000, Remark 2.5]). If M is connected, by
(2-31), for 1≤ i ≤ 4, in KG y (B), we get

(2-33) Ind
(

DX
⊗

∞⊗
n=1

Symqn (TX)⊗ Ri1

)
= Ind

(
DX
⊗

∞⊗
n=1

Symqn (TX)⊗ Ri1

)
⊗[3d ′(W )],

where by [3d ′(W )] we mean the one-dimensional complex vector space on which
y∈G y acts by multiplication by y3d ′(W ). In particular, if B is a point and 3d ′(W ) 6=0
mod N , we get the vanishing theorem for stringc manifolds analogue to the result
of [Hirzebruch 1988, Section 10].

3. Proofs of Theorems 2.8 and 2.9

In this section, we prove the two intermediate results stated in Section 2C and used
in Section 2D to prove our main results.

In Section 3A, following [Liu et al. 2000, Section 3.2], we prove Theorem 2.9.
In Section 3B, we introduce the same refined shift operators as in [Liu et al. 2000,
Section 4.2]. In Section 3C, we construct the twisted spinc Dirac operator on
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M(n j ), the fixed point set of the naturally induced Zn j -action on M . In Section 3D,
by applying the S1-equivariant index theorem in Section 2A, we finally prove
Theorem 2.8.

3A. A proof of Theorem 2.9. We start with some notation and conventions.
Let H be the canonical basis of Lie(S1)= R, that is,

exp(t H)= exp(2
√
−1π t),

for t ∈ R. On the fixed point F , let JH denote the operator which computes the
weight of the S1-action on 0(F, E |F ) for any S1-equivariant vector bundle E over
M . Then JH can be explicitly given by (see [Liu et al. 2003, (3.2)])

(3-1) JH =
1

2π
√
−1

LH |0(F,E |F ),

where LH denotes the infinitesimal action of H on 0(M, E).
Recall that the Z2-grading on

S(TX, K X )⊗
∞⊗

n=1
Sym(TXn)

is induced by the Z2-grading on S(TX, K X ), and the Z2-grading on

S
(

T Y, K X ⊗
⊗
v>0
(det Nv)−1

)
⊗F−p(X)

is induced by the one on S
(
T Y, K X ⊗

⊗
v>0(det Nv)−1

)
. Write

(3-2)

Q1
W =

∞⊗
n=0

3(W n)⊗
∞⊗

n=1
3(Wn), Q2

W =
⊗

n∈N+ 1
2

3(W n)⊗
⊗

n∈N+ 1
2

3(Wn),

F1
V = S(V )⊗

∞⊗
n=1

3(Vn), F2
V =

⊗
n∈N+ 1

2

3(Vn).

There are two natural Z2-gradings on F1
V , F2

V (respectively Q1
W , Q2

W ). The first
grading is induced by the Z2-grading of S(V ) and the forms of homogeneous
degrees in

⊗
∞

n=13(Vn),
⊗

n∈N+ 1
2
3(Vn) (respectively Q2

W ). We define τe|F i±
V
=±1

(i = 1, 2) (respectively τe|Q2±
W
=±1) to be the involution defined by this Z2-grading.

The second grading is the one for which F i
V and Qi

W (i = 1, 2) are purely even,
that is, F i+

V = F i
V , Qi+

W = Qi
W . We denote by τs = id the involution defined by this

Z2-grading. Set Q(W ) = Q1
W ⊗ Q2

W ⊗ Q2
W . We denote by τ1 the Z2-grading on

Q(W ) defined by

(3-3) (Q(W ), τ1)= (Q1
W , τs) ⊗̂ (Q2

W , τe) ⊗̂ (Q2
W , τs).
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Then the coefficients of qn (n ∈ 1
2 Z) in (2-13) of R1(V ), R2(V ), R3(V ), R4(V ),

Q1(W ) are exactly the Z2-graded vector subbundles of (F1
V , τs), (F1

V , τe), (F2
V , τe),

(F2
V , τs), (Q(W ), τ1), respectively, on which P acts by multiplication by n.
Furthermore, we denote by τe (respectively τs) the Z2-grading on

S(TX, K X )⊗
∞⊗

n=1
Sym(TXn)⊗ F i

V

(i = 1, 2) induced by the above Z2-gradings. We denote by τe1 (respectively τs1) the
Z2-grading on S(TX, K X )⊗

⊗
∞

n=1 Sym(TXn)⊗ F i
V ⊗Q(W ) (i = 1, 2) defined by

(3-4) τe1 = τe ⊗̂ τ1, τs1 = τs ⊗̂ τ1.

We still denote by τe1 (respectively τs1) the Z2-grading on

S
(

T Y, K X
⊗
v>0
(det Nv)−1

)
⊗F−p(X)⊗ F i

V ⊗ Q(W )

(i = 1, 2) which is induced as in (3-4).
By (2-19), as in (2-20), there is a natural isomorphism between the Z2-graded

C(V )-Clifford modules over F ,

(3-5) S(V )|F ' S
(

V R
0 ,
⊗
v>0
(det Vv)−1

)
⊗
⊗̂
v>0
3Vv.

Let V0 = V R
0 ⊗R C. Using (2-19) and (3-5), we rewrite (3-2) on the fixed point

set F as follows:

(3-6)

Q1
W =

∞⊗
n=0
3
(⊕
v

W v,n

)
⊗

∞⊗
n=1
3
(⊕
v

Wv,n

)
,

Q2
W =

⊗
n∈N+ 1

2

3
(⊕
v

W v,n

)
⊗
⊗

n∈N+ 1
2

3
(⊕
v

Wv,n

)
,

F1
V =

∞⊗
n=1

3
(
V0,n ⊕

⊕
v>0
(Vv,n ⊕ V v,n)

)
⊗ S

(
V R

0 ,
⊗
v>0
(det Vv)−1

)
⊗
⊗
v>0

3Vv,0,

F2
V =

⊗
n∈N+ 1

2

3
(
V0,n ⊕

⊕
v>0
(Vv,n ⊕ V v,n)

)
.

We can reformulate Theorem 2.9 as follows.

Theorem 3.1. For each α, h, p ∈ Z, p > 0, m ∈ 1
2 Z, for i = 1, 2, τ = τe1 or τs1,

the following identity holds in KG y (B):

(3-7) Indτ
(
DYα ⊗ (KW ⊗ K−1

X )1/2⊗F−p(X)⊗ F i
V ⊗ Q(W ),

m+ 1
2 p2e(N )+ 1

2 pd ′(N ), h
)

= (−1)pd ′(W ) Indτ
(
DYα⊗(KW⊗K−1

X )1/2⊗F0(X)⊗F i
V⊗Q(W )⊗L−p,

m+ ph+ p2e, h
)
.
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Following [Taubes 1989] in spirit, we introduce the same shift operators as in
[Liu et al. 2000, (3.9)]. For p ∈ N, we set

r∗ : Nv,n→ Nv,n+pv, r∗ : N v,n→ N v,n−pv,

r∗ : Vv,n→ Vv,n+pv, r∗ : V v,n→ V v,n−pv,(3-8)

r∗ :Wv,n→Wv,n+pv, r∗ :W v,n→W v,n−pv.

Proposition 3.2. For p ∈ Z, p > 0, i = 1, 2, there are natural isomorphisms of
vector bundles over F :

(3-9) r∗(F−p(X))' F0(X)⊗ L(N )p, r∗(F i
V )' F i

V ⊗ L(V )−p.

For any p ∈ Z, p> 0, i = 1, 2, there are natural G y× S1-equivariant isomorphisms
of vector bundles over F ,

(3-10) r∗(Qi
W )' Qi

W ⊗ L(W )−p.

In particular, one gets the G y × S1-equivariant bundle isomorphism

(3-11) r∗(Q(W ))' Q(W )⊗ L(W )−3p.

Proof. By Proposition 3.1 of [Liu et al. 2000], only the i = 2 case in (3-10) needs
to be proved.

Using Equations (3.14)–(3.16) of the same reference, we have a natural G y× S1-
equivariant isomorphisms of vector bundles over F :

(3-12)

⊗
n∈N+ 1

2 ,v>0
0<n<pv

3in (W v,n−pv) '
⊗

n∈N+ 1
2 ,v>0

0<n<pv

3dim Wv−in (Wv,−n+pv)⊗
⊗
v>0
(det W v)

pv,

⊗
n∈N+ 1

2 ,v<0
0<n<−pv

3i ′n (Wv,n+pv) '
⊗

n∈N+ 1
2 ,v<0

0<n<−pv

3dim Wv−i ′n (W v,−n−pv)⊗
⊗
v>0
(det Wv)

−pv.

From (2-22) and (3-12), we get (3-10) for the case i = 2. �

The following proposition, which is an analogue of [Liu et al. 2000, Proposi-
tion 3.2], is deduced from Proposition 3.2.

Proposition 3.3. For p ∈ Z, p > 0, i = 1, 2, the G y-equivariant isomorphism of
vector bundles over F induced by (3-9), (3-11), denoted by

(3-13) r∗ : S
(

T Y, K X⊗
⊗
v>0
(det Nv)−1

)
⊗(KW⊗K−1

X )1/2⊗F−p(X)⊗F i
V⊗Q(W )

−→ S
(

T Y, K X⊗
⊗
v>0
(det Nv)−1

)
⊗(KW⊗K−1

X )1/2⊗F0(X)⊗F i
V⊗Q(W )⊗L−p,

satisfies the identities
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(3-14)
r−1
∗
· JH · r∗ = JH ,

r−1
∗
· P · r∗ = P + p JH + p2e− 1

2 p2e(N )− 1
2 pd ′(N ).

For the Z2-gradings, we have

(3-15) r−1
∗
τer∗ = τe, r−1

∗
τsr∗ = τs, r−1

∗
τ1r∗ = (−1)pd ′(W )τ1.

Proof. By the proof of [Liu et al. 2000, Proposition 3.2], we need to compute the
action of r−1

∗
· P · r∗ on⊗

n∈N+ 1
2 ,v>0

0<n<pv

3in (W v,n) ⊗
⊗

n∈N+ 1
2 ,v<0

0<n<−pv

3i ′n (Wv,n).

In fact, by (3-12),

(3-16) r−1
∗
· P · r∗

=

∑
n∈N+ 1

2 , v>0
0<n<pv

(dim Wv−in)(−n+pv) +
∑

n∈N+ 1
2 , v<0

0<n<−pv

(dim Wv−i ′n)(−n−pv)

= P+p JH+
1
2 p2e(W ).

By [Liu et al. 2000, (3.21)–(3.23)], (2-21)–(2-23), and (3-16), we deduce the second
line of (3-14). The first line of (3-14) is obvious.

Consider the Z2-gradings. The first two identities of (3-15) were proved in [Liu
et al. 2003, (3.18)]. τ1 changes only on⊗

n∈N+ 1
2 ,v>0

0<n<pv

3in (W v,n) ⊗
⊗

n∈N+ 1
2 ,v<0

0<n<−pv

3i ′n (Wv,n).

From (2-21) and (3-12), we get the third identity of (3-15). This completes the
proof of Proposition 3.3. �

Theorem 3.1 is a direct consequence of Proposition 3.3. This also completes the
proof of Theorem 2.9. �

The rest of this section is devoted to a proof of Theorem 2.8.

3B. The refined shift operators. We first introduce a partition of [0, 1] as in [Liu
et al. 2000, pp. 942–943]. Set

J = {v ∈ N | there exists α such that Nv 6= 0 on Fα}

and

(3-17) 8=
{
β ∈ (0, 1] | there exists v ∈ J such that βv ∈ Z

}
.
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We order the elements in 8 so that

8= {βi | 1≤ i ≤ J0, J0 ∈ N and βi < βi+1}.

Then, for any integer 1≤ i ≤ J0, there exist pi , ni ∈N, 0< pi ≤ ni , with (pi , ni )= 1
such that

(3-18) βi = pi/ni .

Clearly, βJ0 = 1. We also set p0 = 0 and β0 = 0.
For 0≤ j ≤ J0, p ∈ N∗, we write

(3-19)
I p

j =

{
(v, n) ∈ N×N

∣∣∣ v ∈ J, (p− 1)v < n ≤ pv, n
v
= p− 1+

p j

n j

}
,

Ī p
j =

{
(v, n) ∈ N×N

∣∣∣ v ∈ J, (p− 1)v < n ≤ pv, n
v
> p− 1+

p j

n j

}
.

Clearly, I p
0 is the empty set. We define Fp, j (X) as in [Liu et al. 2000, (2.21)],

analogously to (2-26). More specifically, we set

(3-20) Fp, j (X)

=

∞⊗
n=1

Sym(T Yn)⊗
⊗
v>0

( ∞⊗
n=1

Sym(Nv,n)⊗
⊗

n>(p−1)v+
p j
n j
v

Sym(N v,n)
)

⊗
⊗
v>0

0≤n≤(p−1)v+
⌊ p j

n j
v
⌋(Sym(Nv,−n)⊗ det Nv)

= Fp(X)⊗F′p−1(X)⊗
⊗

(v,n)∈ Ī p
j

Sym(N v,n)⊗
⊗

(v,n)∈
⋃ j

i=0 I p
i

(Sym(Nv,−n)⊗ det Nv),

where, for s ∈R, the notation bsc denotes the greatest integer not exceeding s. Then

(3-21) Fp,0(X)= F−p+1(X), Fp,J0(X)= F−p(X).

From the construction of βi , we know that, for v ∈ J , there is no integer in
((p j−1/n j−1)v, (p j/n j )v). Furthermore (see [Liu et al. 2000, (4.24)]),

(3-22)
⌊

p j−1

n j−1
v

⌋
=

{⌊
(p j/n j )v

⌋
− 1 if v ≡ 0 mod (n j ),⌊

(p j/n j )v
⌋

if v 6≡ 0 mod (n j ).

We use the same shift operators r j∗, 1 ≤ j ≤ J0 as in [Liu et al. 2000, (4.21)],
which refine the shift operator r∗ defined in (3-8). For p ∈ N\{0}, set

(3-23)

r j∗ : Nv,n→ Nv,n+(p−1)v+p jv/n j , r j∗ : N v,n→ N v,n−(p−1)v−p jv/n j ,

r j∗ : Vv,n→ Vv,n+(p−1)v+p jv/n j , r j∗ : V v,n→ V v,n−(p−1)v−p jv/n j ,

r j∗ :Wv,n→Wv,n+(p−1)v+p jv/n j , r j∗ :W v,n→W v,n−(p−1)v−p jv/n j .
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For 1≤ j ≤ J0, we define F(β j ), F1
V (β j ), F2

V (β j ), Q1
W (β j ), and Q2

W (β j ) over
F as follows (compare with [Liu et al. 2000, (4.13)]):

(3-24)

F(β j )=
⊗

0<n∈Z

Sym(T Yn) ⊗
⊗
v>0

v≡0,n j/2 mod n j

⊗
0<n∈Z+

p j
n j
v

Sym(Nv,n ⊕ N v,n)

⊗
⊗

0<v′<n j/2
Sym

( ⊕
v≡v′,−v′mod n j

( ⊕
0<n∈Z+

p j
n j
v

Nv,n ⊕
⊕

0<n∈Z−
p j
n j
v

N v,n

))
,

F1
V (β j )=3

( ⊕
0<n∈Z

V0,n
⊕
v>0

v≡0,n j/2 mod n j

( ⊕
0<n∈Z+

p j
n j
v

Vv,n ⊕
⊕

0<n∈Z−
p j
n j
v

V v,n

)
⊕

0<v′<n j/2

( ⊕
v≡v′,−v′mod n j

( ⊕
0<n∈Z+

p j
n j
v

Vv,n ⊕
⊕

0<n∈Z−
p j
n j
v

V v,n

)))
,

F2
V (β j )=3

( ⊕
0<n∈Z+ 1

2

V0,n
⊕
v>0

v≡0,n j/2 mod n j

( ⊕
0<n∈Z+

p j
n j
v+ 1

2

Vv,n ⊕
⊕

0<n∈Z−
p j
n j
v+ 1

2

V v,n

)
⊕

0<v′<n j/2

( ⊕
v≡v′,−v′mod n j

( ⊕
0<n∈Z+

p j
n j
v+ 1

2

Vv,n ⊕
⊕

0<n∈Z−
p j
n j
v+ 1

2

V v,n

)))
,

Q1
W (β j )=3

( ⊕
v

( ⊕
0<n∈Z+

p j
n j
v

Wv,n ⊕
⊕

0≤n∈Z−
p j
n j
v

W v,n

))
,

Q2
W (β j )=3

(⊕
v

( ⊕
0<n∈Z+

p j
n j
v+ 1

2

Wv,n ⊕
⊕

0<n∈Z−
p j
n j
v+ 1

2

W v,n

))
.

Using (3-22), Equations (3-24), and computing directly, we get an analogue of
[Liu et al. 2000, Proposition 4.1] which refines Proposition 3.2:

Proposition 3.4. For p ∈ Z, p > 0, 1≤ j ≤ J0, there are natural isomorphisms of
vector bundles over F :

r j∗(Fp, j−1(X))'

F(β j )⊗
⊗
v>0

v≡0 mod n j

Sym(N v,0)⊗
⊗
v>0

(det Nv)
⌊ p j

n j
v
⌋
+(p−1)v+1

⊗
⊗
v>0

v≡0 mod n j

(det Nv)−1,

r j∗(Fp, j (X))' F(β j )⊗
⊗
v>0

v≡0 mod n j

Sym(Nv,0)⊗
⊗
v>0

(det Nv)
⌊ p j

n j
v
⌋
+(p−1)v+1,

r j∗(F1
V )' S

(
V R

0 ,
⊗
v>0
(det Vv)−1

)
⊗ F1

V (β j )

⊗
⊗
v>0

v≡0 mod n j

3(Vv,0)⊗
⊗
v>0
(det V v)

⌊ p j
n j
v
⌋
+(p−1)v,
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r j∗(F2
V )' F2

V (β j )⊗
⊗
v>0

v≡n j/2 mod n j

3(Vv,0)⊗
⊗
v>0
(det V v)

⌊ p j
n j
v+ 1

2

⌋
+(p−1)v.

For p ∈ Z, p > 0, 1≤ j ≤ J0, there are natural G y × S1-equivariant isomorphisms
of vector bundles over F ,

(3-25) r j∗(Q1
W )' Q1

W (β j )⊗
⊗
v>0

v≡0 mod n j

det Wv

⊗
⊗
v>0
(det W v)

⌊ p j
n j
v
⌋
+(p−1)v+1

⊗
⊗
v<0
(det Wv)

⌊
−

p j
n j
v
⌋
−(p−1)v,

r j∗(Q2
W )' Q2

W (β j )⊗
⊗
v>0

v≡n j/2 mod n j

3(Wv,0)⊗
⊗
v<0

v≡n j/2 mod n j

3(W v,0)

⊗
⊗
v>0
(det W v)

⌊ p j
n j
v+ 1

2

⌋
+(p−1)v

⊗
⊗
v<0
(det Wv)

⌊
−

p j
n j
v+ 1

2

⌋
−(p−1)v.

Proof. By [Liu et al. 2000, Proposition 4.1], we need only prove the second
isomorphism in (3-25). In fact, using [Liu et al. 2000, (3.14)], we have the natural
G y × S1-equivariant isomorphisms of vector bundles over F :

(3-26)
⊗

0<n∈Z+ 1
2 , v>0

n−(p−1)v−(p j/n j )v≤0

3in (W v,n−(p−1)v−(p j/n j )v)'
⊗
v>0
(det W v)

⌊ p j
n j
v+ 1

2

⌋
+(p−1)v

⊗
⊗

0<n∈Z+ 1
2 , v>0

n−(p−1)v−(p j/n j )v≤0

3dim Wv−in (Wv,−n+(p−1)v+(p j/n j )v),

(3-27)
⊗

0<n∈Z+ 1
2 , v<0

n+(p−1)v+(p j/n j )v≤0

3i ′n (Wv,n+(p−1)v+(p j/n j )v)'
⊗
v<0
(det Wv)

⌊
−

p j
n j
v+ 1

2

⌋
−(p−1)v

⊗
⊗

0<n∈Z+ 1
2 , v<0

n+(p−1)v+(p j/n j )v≤0

3dim Wv−i ′n (W v,−n−(p−1)v−(p j/n j )v).

From the last equation in (3-24), together with (3-26) and (3-27), we get the second
isomorphism in (3-25). The proof of Proposition 3.4 is complete. �

3C. The spinc Dirac operators on M(n j ). Recall that there is a nontrivial circle
action on M which can be lifted to the circle actions on V and W .

For n ∈N\{0}, let Zn ⊂ S1 denote the cyclic subgroup of order n. Let M(n j ) be
the fixed point set of the induced Zn j action on M . Then

π : M(n j )→ B

is a fibration with compact fiber X (n j ). Let N (n j )→ M(n j ) be the normal bundle
to M(n j ) in M . As in [Bott and Taubes 1989, p. 151] (see also [Liu et al. 2000,
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Section 4.1; Liu et al. 2003, Section 4.1; Taubes 1989]), we see that N (n j ) and V
can be decomposed, as real vector bundles over M(n j ), into

(3-28)

N (n j )=
⊕

0<v<n j/2
N (n j )v ⊕ N (n j )

R
n j/2,

V |M(n j ) = V (n j )
R
0 ⊕

⊕
0<v<n j/2

V (n j )v ⊕ V (n j )
R
n j/2,

where V (n j )
R
0 is the real vector bundle on which Zn j acts by identity, and N (n j )

R
n j/2

and V (n j )
R
n j/2 are defined to be zero if n j is odd. Moreover, for 0 < v < n j/2,

N (n j )v and V (n j )v each admit a unique complex structure making them into
complex vector bundles on which g ∈ Zn j acts by gv. We also denote by V (n j )0,
V (n j )n j/2, and N (n j )n j/2 the corresponding complexification of V (n j )

R
0 , V (n j )

R
n j/2,

and N (n j )
R
n j/2.

Similarly, we also have the following Zn j -equivariant decomposition of W over
M(n j ) into complex vector bundles:

(3-29) W |M(n j ) =
⊕

0≤v<n j

W (n j )v,

where for 0≤ v < n j , g ∈ Zn j acts on W (n j )v by sending g to gv.
By [Liu et al. 2000, Lemma 4.1] (which generalizes [Bott and Taubes 1989,

Lemmas 9.4 and 10.1] and [Taubes 1989, Lemma 5.1]), we know that the vector
bundles TX (n j ) and V (n j )

R
0 are orientable and even-dimensional. Thus N (n j )

is orientable over M(n j ). By (3-28), V (n j )
R
n j/2 and N (n j )

R
n j/2 are also orientable

and even-dimensional. In what follows, we fix the orientations of N (n j )
R
n j/2 and

V (n j )
R
n j/2. Then TX (n j ) and V (n j )

R
0 are naturally oriented by (3-28) and the

orientations of TX , V , N (n j )
R
n j/2 and, V (n j )

R
n j/2. Let W (n j )

R
n j/2 be the underlying

real vector bundle of W (n j )n j/2, which are canonically oriented by its complex
structure.

By (2-18), (2-19), (3-28), and (3-29), we get identifications of complex vector
bundles over F (see [Liu et al. 2000, (4.9) and (4.12)]): for 0< v ≤ n j/2,

(3-30)

N (n j )v|F =
⊕
v′>0

v′≡vmod n j

Nv′ ⊕
⊕
v′>0

v′≡−vmod n j

N v′,

V (n j )v|F =
⊕
v′>0

v′≡vmod n j

Vv′ ⊕
⊕
v′>0

v′≡−vmod n j

V v′,

and for 0≤ v < n j ,

(3-31) W (n j )v|F =
⊕

v′≡vmod n j

Wv′ .
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We also get identifications of real vector bundles over F (see [Liu et al. 2000,
(4.11)]):

(3-32)

TX (n j )|F = T Y ⊕
⊕
v>0

v≡0 mod n j

Nv, N (n j )
R
n j/2|F =

⊕
v>0

v≡n j/2 mod n j

Nv,

V (n j )
R
0 |F = V R

0 ⊕
⊕
v>0

v≡0 mod n j

Vv, V (n j )
R
n j/2|F =

⊕
v>0

v≡n j/2 mod n j

Vv.

Moreover, we have an identifications of complex vector bundles over F :

(3-33)

TX (n j )|F ⊗R C= T Y ⊗R C⊕
⊕
v>0

v≡0 mod n j

(Nv ⊕ N v),

V (n j )0|F = V R
0 ⊗R C⊕

⊕
v>0

v≡0 mod n j

(Vv ⊕ V v).

As (p j , n j )= 1, we know that, for v ∈Z, (p j/n j )v ∈Z if and only if (v/n j ) ∈ Z.
Also, (p j/n j )v ∈ Z+ 1

2 if and only if (v/n j ) ∈ Z+ 1
2 . Also, if v ≡ −v′mod n j ,

then
{n | 0< n ∈ Z+ (p j/n j )v} = {n | 0< n ∈ Z− (p j/n j )v

′
}.

Using the identifications (3-30), (3-31), and (3-33), we can rewrite F(β j ), F1
V (β j ),

F2
V (β j ), Q1

W (β j ), and Q2
W (β j ) over F defined in (3-24) as follows (compare

with [Liu et al. 2000, (4.7)]):

(3-34) F(β j )=
⊗

0<n∈Z

Sym(TX (n j )n)

⊗
⊗

0<v<n j/2
Sym

( ⊕
0<n∈Z+

p j
n j
v

N (n j )v,n ⊕
⊕

0<n∈Z−
p j
n j
v

N (n j )v,n

)
⊗

⊕
0<n∈Z+ 1

2

Sym(N (n j )n j/2,n),

(3-35) F1
V (β j )=3

( ⊕
0<n∈Z

V (n j )0,n

⊕
⊕

0<v<n j/2

( ⊕
0<n∈Z+

p j
n j
v

V (n j )v,n ⊕
⊕

0<n∈Z−
p j
n j
v

V (n j )v,n

)
⊕

⊕
0<n∈Z+ 1

2

V (n j )n j/2,n

)
,

(3-36) F2
V (β j )=3

( ⊕
0<n∈Z

V (n j )n j/2,n

⊕
⊕

0<v<n j/2

( ⊕
0<n∈Z+

p j
n j
v+ 1

2

V (n j )v,n ⊕
⊕

0<n∈Z−
p j
n j
v+ 1

2

V (n j )v,n

)
⊕

⊕
0<n∈Z+ 1

2

V (n j )0,n

)
,
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Q1
W (β j )=3

( ⊕
0≤v<n j

( ⊕
0<n∈Z+

p j
n j
v

W (n j )v,n ⊕
⊕

0≤n∈Z−
p j
n j
v

W (n j )v,n

))
,(3-37)

Q2
W (β j )=3

( ⊕
0≤v<n j

( ⊕
0<n∈Z+

p j
n j
v+ 1

2

W (n j )v,n ⊕
⊕

0<n∈Z−
p j
n j
v+ 1

2

W (n j )v,n

))
.(3-38)

We indicate here that F(β j ), F1
V (β j ), F2

V (β j ), Q1
W (β j ), and Q2

W (β j ) in (3-24) are
the restrictions of the corresponding vector bundles in the right side of (3-34)–(3-38)
over M(n j ), which will still be denoted as F(β j ), F1

V (β j ), F2
V (β j ), Q1

W (β j ), and
Q2

W (β j ). Write

(3-39) QW (β j )= Q1
W (β j )⊗ Q2

W (β j )⊗ Q2
W (β j ),

which we now think of as a vector bundle over M(n j ).
We now define the spinc Dirac operators on M(n j ). The following lemma follows

from the proof of [Bott and Taubes 1989, Lemmas 11.3 and 11.4].

Lemma 3.5 (compare with [Liu et al. 2000, Lemma 4.2]). Assume that (2-17) holds.
Let

(3-40) L(n j )=
⊗

0<v<n j/2

(
det(N (n j )v)⊗ det(V (n j )v)

⊗
(
det(W (n j )v)⊗ det(W (n j )n j−v)

)3)(r(n j )+1)v

be the complex line bundle over M(n j ). Then L(n j ) has an n j -th root over M(n j ).
Moreover, U1 := TX (n j )⊕V (n j )

R
0 ⊕W (n j )

R
n j/2⊕W (n j )

R
n j/2 has a spinc struc-

ture defined by

L1 :=K X⊗
⊗

0<v<n j/2

(
det(N (n j )v)⊗det(V (n j )v)

)
⊗(det(W (n j )n j/2))

3
⊗L(n j )

r(n j )/n j,

and U2 := TX (n j )⊕ V (n j )
R
n j/2 ⊕W (n j )

R
n j/2 ⊕W (n j )

R
n j/2 has a spinc structure

defined by

L2 := K X ⊗
⊗

0<v<n j/2
det(N (n j )v)⊗ (det(W (n j )n j/2))

3
⊗ L(n j )

r(n j )/n j .

We remark that in order to define an S1- or G y- action on L(n j )
r(n j )/n j , we must

replace the S1- or G y-action by its n j -fold action. Here, by abusing notation, we
still speak of an S1- or G y-action without causing any confusion.

Let S(U1, L1) and S(U2, L2) be the fundamental complex spinor bundles for
(U1, L1) and (U2, L2); see [Lawson and Michelsohn 1989, Appendix D]. There are
two Z2-gradings on these bundles. The first grading, denoted by τs , is induced by
the involutions on S(U1, L1) and S(U2, L2) determined by TX (n j )⊕W (n j )

R
n j/2 as

in (2-1). The second grading, which we denote by τe, is induced by the involution
on S(U1, L1) determined by TX (n j )⊕V (n j )

R
0 ⊕W (n j )

R
n j/2, and by the involution

on S(U2, L2) determined by U2 = TX (n j )⊕ V (n j )
R
n j/2⊕W (n j )

R
n j/2, as in (2-1).
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In what follows, by DX (n j ) we mean the S1-equivariant spinc Dirac operator on
S(U1, L1) or S(U2, L2) over M(n j ).

Corresponding to (2-8), by (3-30) and (3-31), we define S(U1, L1)
′ and S(U2, L2)

′

equipped with involutions τ ′s and τ ′e as follows (compare with [Liu et al. 2000,
(4.16)]):

(3-41) (S(U1, L1)
′, τ ′s/τ

′

e)=(
S
(

T Y ⊕ V R
0 , L1⊗

⊗
v>0

v≡0 mod n j

(det Nv ⊗ det Vv)−1
⊗
⊗

v≡n j/2 mod n j

(det Wv)
−2
)
, τ ′s/τ

′

e

)
⊗

⊗
v>0

v≡0 mod n j

3±1(Vv)⊗
⊗

v≡n j/2 mod n j

3−1(Wv)⊗
⊗

v≡n j/2 mod n j

3(Wv)

and

(3-42) (S(U2, L2)
′, τ ′s/τ

′

e)=

S
(

T Y, L2⊗
⊗
v>0

v≡0 mod n j

(det Nv)−1
⊗

⊗
v>0

v≡n j/2 mod n j

(det Vv)−1
⊗

⊗
v≡n j/2 mod n j

(det Wv)
−2
)

⊗
⊗
v>0

v≡n j/2 mod n j

3±1(Vv)⊗
⊗

v≡n j/2 mod n j

3−1(Wv)⊗
⊗

v≡n j/2 mod n j

3(Wv).

Then, by (2-8), for i=1, 2, we have the following isomorphisms of Clifford modules
over F preserving the Z2-gradings (compare with [Liu et al. 2000, (4.17)]):

(3-43) (S(Ui , L i ), τs/τe)|F ' (S(Ui , L i )
′, τ ′s/τ

′

e)⊗
⊗
v>0

v≡0 mod n j

3−1(Nv).

As in [Liu et al. 2000, pp. 952], we introduce formally the following complex
line bundles over F :

(3-44) L ′1 =
(

L−1
1 ⊗

⊗
v>0

v≡0 mod n j

(det Nv ⊗ det Vv)

⊗
⊗

v≡n j/2 mod n j

(det Wv)
2
⊗
⊗
v>0

(det Nv ⊗ det Vv)−1
⊗ K X

)1/2

and

(3-45) L ′2 =
(

L−1
2 ⊗

⊗
v>0

v≡0 mod n j

det Nv ⊗
⊗
v>0

v≡n j/2 mod n j

det Vv

⊗
⊗

v≡n j/2 mod n j

(det Wv)
2
⊗
⊗
v>0

(det Nv)−1
⊗ K X

)1/2
.
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In fact, from (2-8), Lemma 3.5, and the assumption that V is spin, one verifies easily
that c1(L ′2i )= 0 mod 2 for i = 1, 2, which implies that L ′1 and L ′2 are well-defined
complex line bundles over F .

Then, by [Liu et al. 2000, (3.14)], (3-41)–(3-45), and the definitions of L1, L2,
we get the following identifications of Clifford modules over F (compare with [Liu
et al. 2000, (4.19)]):

(3-46) (S(U1, L1)
′
⊗ L ′1, (τ

′

s/τ
′

e)⊗ id)

= S
(

T Y, K X ⊗
⊗
v>0
(det Nv)−1

)
⊗ (S(V R

0 ,
⊗
v>0
(det Vv)−1), id/τ)

⊗
⊗
v>0

v≡0 mod n j

3±1(Vv)⊗
⊗
v>0

v≡n j/2 mod n j

3−1(Wv)⊗
⊗
v<0

v≡n j/2 mod n j

3−1(W v)

⊗
⊗
v>0

v≡n j/2 mod n j

3(Wv)⊗
⊗
v<0

v≡n j/2 mod n j

3(W v)⊗
⊗
v<0

v≡n j/2 mod n j

(det Wv)
2

and

(3-47) (S(U2, L2)
′
⊗ L ′2, (τ

′

s/τ
′

e)⊗ id)

= S
(

T Y, K X ⊗
⊗
v>0
(det Nv)−1

)
⊗

⊗
v>0

v≡n j/2 mod n j

3±1(Vv)⊗
⊗
v>0

v≡n j/2 mod n j

3−1(Wv)

⊗
⊗
v<0

v≡n j/2 mod n j

3−1(W v)⊗
⊗
v>0

v≡n j/2 mod n j

3(Wv)⊗
⊗
v<0

v≡n j/2 mod n j

3(W v)⊗
⊗
v<0

v≡n j/2 mod n j

(det Wv)
2.

Now we compare the Z2-gradings in (3-46) and (3-47). Set (compare with [Liu
et al. 2000, (4.20)])

(3-48)

1(n j , N )=
∑

n j/2<v′<n j

∑
0<v, v≡v′mod n j

dim Nv + o(N (n j )
R
n j/2),

1(n j , V )=
∑

n j/2<v′<n j

∑
0<v, v≡v′mod n j

dim Vv + o(V (n j )
R
n j/2),

1(n j ,W )=
∑

v<0, v≡n j/2 mod n j

dim Wv,

where o(N (n j )
R
n j/2) and o(V (n j )

R
n j/2) equal 0 or 1 depending on whether the

given orientation on N (n j )
R
n j/2 and V (n j )

R
n j/2 agrees or disagrees with the complex

orientation of ⊕
v>0

v≡n j/2 mod n j

Nv and
⊕
v>0

v≡n j/2 mod n j

Vv,

respectively.
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As explained in [Liu et al. 2003, p. 166], for the Z2-gradings induced by τs , the
differences of the Z2-gradings of (3-46) and (3-47) are both

(−1)1(n j ,N )+1(n j ,W )
;

for the Z2-gradings induced by τe, the difference of the Z2-gradings of (3-46)
(respectively (3-47)) is

(−1)1(n j ,N )+1(n j ,V )+1(n j ,W )

(respectively (−1)
1(n j ,N )+o(V (n j )

R
n j /2

)+1(n j ,W )
).

Lemma 3.6 (compare with [Liu et al. 2000, Lemma 4.3]). Let us write

L(β j )1 = L ′1⊗
⊗
v>0
(det Nv)

⌊ p j
n j
v
⌋
+(p−1)v+1

⊗
⊗
v>0
(det V v)

⌊ p j
n j
v
⌋
+(p−1)v

⊗
⊗
v>0

v≡0 mod n j

(det Nv)−1
⊗
⊗
v<0
(det Wv)

⌊
−

p j
n j
v
⌋
+2
⌊
−

p j
n j
v+ 1

2

⌋
−3(p−1)v

⊗
⊗
v>0
(det W v)

⌊ p j
n j
v
⌋
+2
⌊ p j

n j
v+ 1

2

⌋
+3(p−1)v+1

⊗
⊗
v>0

v≡0 mod n j

det Wv ⊗
⊗
v<0

v≡n j/2 mod n j

(det W v)
2

and

L(β j )2 = L ′2⊗
⊗
v>0
(det Nv)

⌊ p j
n j
v
⌋
+(p−1)v+1

⊗
⊗
v>0
(det V v)

⌊ p j
n j
v+ 1

2

⌋
+(p−1)v

⊗
⊗
v>0

v≡0 mod n j

(det Nv)−1
⊗
⊗
v<0
(det Wv)

⌊
−

p j
n j
v
⌋
+2
⌊
−

p j
n j
v+ 1

2

⌋
−3(p−1)v

⊗
⊗
v>0

(det W v)

⌊ p j
n j
v
⌋
+2
⌊ p j

n j
v+ 1

2

⌋
+3(p−1)v+1

⊗
⊗
v>0

v≡0 mod n j

det Wv ⊗
⊗
v<0

v≡n j/2 mod n j

(det W v)
2.

Then L(β j )1 and L(β j )2 can be extended naturally to G y× S1-equivariant complex
line bundles over M(n j ) which we will still denote by L(β j )1 and L(β j )2.

Proof. We introduce the following line bundle over M(n j ):

(3-49) Lω(β j )=
⊗

0<v<n j/2

(
det(N (n j )v)⊗ det(V (n j )v)

⊗ (det(W (n j )v)⊗ det(W (n j )n j−v))
3)−ω(v)−r(n j )v

.

where, as in [Liu et al. 2003, (4.35)], we define ω by⌊ p j

n j
v
⌋
=

p j

n j
v−

ω(v)

n j
.
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As in [Liu et al. 2003, (4.38); Liu et al. 2000, (4.28)], Lemma 3.5 implies that
Lω(β j )

1/n j is well-defined over M(n j ). Direct calculation shows that

L(β j )1= L−(p−1)−p j/n j ⊗Lω(β j )
1/n j ⊗

⊗
0<v<n j/2

det(W (n j )v)⊗(det(W (n j )n j/2))
2

⊗
⊗

1≤m≤p j/2

⊗
m− 1

2<(p j/n j )v<m

(det(W (n j )v)⊗ det(W (n j )n j−v))
2

and

L(β j )2= L−(p−1)−p j/n j ⊗Lω(β j )
1/n j ⊗

⊗
0<v<n j/2

det(W (n j )v)⊗(det(W (n j )n j/2))
2

⊗
⊗

1≤m≤p j/2

⊗
m− 1

2<(p j/n j )v<m

(
(det(W (n j )v)⊗ det(W (n j )n j−v))

2
⊗ det(V (n j )v)

)
.

The proof of Lemma 3.6 is complete. �

To simplify the notation, we introduce the following locally constant functions
on F (compare with [Liu et al. 2003, (4.45); Liu et al. 2000, (4.30)]):

(3-50) ε1
W =−

1
2

∑
v>0

(dim Wv) ·
((⌊ p j

n j
v
⌋
+ (p− 1)v

)(⌊ p j

n j
v
⌋
+ (p− 1)v+ 1

)
−

(⌊ p j

n j
v
⌋
+ (p− 1)v

)(
2
(⌊ p j

n j
v
⌋
+ (p− 1)v

)
+ 1

))
−

1
2

∑
v<0

(dim Wv) ·
((
−

⌊ p j

n j
v
⌋
− (p− 1)v

)(
−

⌊ p j

n j
v
⌋
− (p− 1)v+ 1

)
+

(⌊ p j

n j
v
⌋
+ (p− 1)v

)(
2
(
−

⌊ p j

n j
v
⌋
− (p− 1)v

)
+ 1

))
,

(3-51) ε2
W =−

1
2

∑
v>0

(dim Wv) ·
((⌊ p j

n j
v+

1
2

⌋
+ (p− 1)v

)2

− 2
( p j

n j
v+ (p− 1)v

)(⌊ p j

n j
v+

1
2

⌋
+ (p− 1)v

))
−

1
2

∑
v<0

(dim Wv) ·
((⌊
−

p j

n j
v+

1
2

⌋
− (p− 1)v

)2

+ 2
( p j

n j
v+ (p− 1)v

)(⌊
−

p j

n j
v+

1
2

⌋
− (p− 1)v

))
,

(3-52) ε1=
1
2

∑
v>0

(dim Nv−dim Vv)
((⌊ p j

n j
v
⌋
+(p−1)v

)(⌊ p j

n j
v
⌋
+(p−1)v+1

)
−

( p j

n j
v+ (p− 1)v

)(
2
(⌊ p j

n j
v
⌋
+ (p− 1)v

)
+ 1

))
,
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(3-53) ε2 =
1
2

∑
v>0

(dim Nv) ·
((⌊ p j

n j
v
⌋
+ (p− 1)v

)(⌊ p j

n j
v
⌋
+ (p− 1)v+ 1

)
−

( p j

n j
v+ (p− 1)v

)(
2
(⌊ p j

n j
v
⌋
+ (p− 1)v

)
+ 1

))
−

1
2

∑
v>0

(dim Vv) ·
((⌊ p j

n j
+

1
2

⌋
+ (p− 1)v

)2

−2
( p j

n j
v+ (p− 1)v

)(⌊ p j

n j
+

1
2

⌋
+ (p− 1)v

))
.

As in [Liu et al. 2000, (2.23)], for 0≤ j ≤ J0, we set

(3-54)

e(p, β j , N )= 1
2

∑
v>0

(dim Nv) ·
(⌊ p j

n j
v
⌋
+ (p− 1)v

)
×

(⌊ p j

n j
v
⌋
+ (p− 1)v+ 1

)
,

d ′(p, β j , N )=
∑
v>0

(dim Nv) ·
(⌊ p j

n j
v
⌋
+ (p− 1)v

)
.

Then e(p, β j , N ) and d ′(p, β j , N ) are locally constant functions on F . In particular,
we have

(3-55)

e(p, β0, N )= 1
2(p− 1)2e(N )+ 1

2(p− 1)d ′(N ),

e(p, βJ0, N )= 1
2 p2e(N )+ 1

2 pd ′(N ),

d ′(p, βJ0, N )= d ′(p+ 1, β0, N )= pd ′(N ).

Proposition 3.7 (compare with [Liu et al. 2000, Proposition 4.2]). For i = 1, 2,
the G y-equivariant isomorphisms of complex vector bundles over F induced by
Proposition 3.4 and (3-46)–(3-47),

ri1 : S
(

T Y, K X ⊗
⊗
v>0
(det Nv)−1

)
⊗ (KW ⊗ K−1

X )1/2⊗Fp, j−1(X)⊗ F i
V ⊗ Q(W )

−→ S(Ui , L i )
′
⊗ (KW ⊗ K−1

X )1/2⊗F(β j )⊗ F i
V (β j )

⊗ QW (β j )⊗ L(β j )i ⊗
⊗
v>0

v≡0 mod n j

Sym(N v,0)

and

ri2 : S
(

T Y, K X ⊗
⊗
v>0
(det Nv)−1

)
⊗ (KW ⊗ K−1

X )1/2⊗Fp, j (X)⊗ F i
V ⊗ Q(W )

−→ S(Ui , L i )
′
⊗ (KW ⊗ K−1

X )1/2⊗F(β j )⊗ F i
V (β j )

⊗ QW (β j )⊗ L(β j )i ⊗
⊗
v>0

v≡0 mod n j

(Sym(Nv,0)⊗ det Nv)

have the following properties:
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(i) For i = 1, 2 and γ = 1, 2, we have

(3-56) r−1
iγ · JH · riγ = JH , r−1

iγ · P · riγ = P +
(

p j

n j
+ (p− 1)

)
JH + εiγ ,

where the εiγ are given by

(3-57)
εi1 = εi + ε

1
W + 2ε2

W − e(p, β j−1, N ),

εi2 = εi + ε
1
W + 2ε2

W − e(p, β j , N ).

(ii) For i = 1, 2 and γ = 1, 2, we have

(3-58) r−1
iγ τeriγ = (−1)µi τe, r−1

iγ τsriγ = (−1)µ3τs, r−1
iγ τ1riγ = (−1)µ4τ1,

where the µi are given by

µ1 =−
∑
v>0

(dim Vv)
⌊ p j

n j
v
⌋
+1(n j , N )+1(n j , V )+1(n j ,W ) mod 2,

µ2 =−
∑
v>0

(dim Vv) ·
⌊ p j

n j
v+

1
2

⌋
+1(n j , N )+o(V (n j )

R
n j/2)+1(n j ,W ) mod 2,

µ3 =1(n j , N )+1(n j ,W ) mod 2,

µ4 =
∑
v>0

(dim Wv) ·
(⌊ p j

n j
v+

1
2

⌋
+(p−1)v

)
+

∑
v<0

(dim Wv) ·
(⌊
−

p j

n j
v+

1
2

⌋
−(p−1)v

)
mod 2.

Proof. By the proof of [Liu et al. 2000, Proposition 4.2], we need to compute the
action of r−1

∗
· P · r∗ on⊗

0<n∈Z+ 1
2 , v>0

n−(p−1)v−(p j/n j )v≤0

3in (W v,n)⊗
⊗

0<n∈Z+ 1
2 , v<0

n+(p−1)v+(p j/n j )v≤0

3i ′n (Wv,n).

In fact, by (3-26) and (3-27), as in (3-16), we get

(3-59) r−1
∗
· P ·r∗ =

∑
0<n∈Z+ 1

2 , v>0
n−(p−1)v−(p j/n j )v≤0

(dim Wv− in)

(
−n+(p−1)v+

p j

n j
v

)

+

∑
0<n∈Z+ 1

2 , v<0
n+(p−1)v+(p j/n j )v≤0

(dim Wv− i ′n)
(
−n−(p−1)v−

p j

n j
v

)

= P+
(

p−1+
p j

n j

)
JH +ε

2
W .

By [Liu et al. 2000, (4.36)–(4.38)] and (3-59), we deduce the second identity in
(3-56). The first identity in (3-56) is obvious.
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Consider the Z2-gradings. By [Liu et al. 2003, (4.49)–(4.50)] and the discussion
following (3-48), we get the first two identities in (3-58). Observe that τ1 changes
only on ⊗

0<n∈Z+ 1
2 , v>0

n−(p−1)v−(p j/n j )v≤0

3in (W v,n) ⊗
⊗

0<n∈Z+ 1
2 , v<0

n+(p−1)v+(p j/n j )v≤0

3i ′n (Wv,n).

From (3-26) and (3-27), we get the third identity in (3-58). �

3D. A proof of Theorem 2.8.

Lemma 3.8 (compare with [Liu et al. 2000, Lemmas 4.4 and 4.6]). For each
connected component M ′ of M(n j ), the following functions are independent on the
connected components of F in M ′:

εi + ε
1
W + 2ε2

W , i = 1, 2,

d ′(p, β j , N )+µi +µ4 mod 2, i = 1, 2, 3,(3-60)

d ′(p, β j−1, N )+
∑
0<v

dim Nv +µi +µ4 mod 2, i = 1, 2, 3.

Proof. Recall that
⌊ p j

n j
v
⌋
=

p j
n j
v− ω(v)

n j
. By using (3-31), we explicitly express ε1

W

and ε2
W defined in (3-50)–(3-51) as follows:

(3-61) ε1
W =

1
2(p− 1+ p j/n j )

2e(W )+ 1
8 dim W (n j )n j/2

+
1
2

∑
0<v<n j/2

ω(v)ω(−v)

n2
j

(dim W (n j )v + dim W (n j )n j−v),

and

(3-62) ε2
W =

1
2(p− 1+ p j/n j )

2e(W )− 1
8 dim W (n j )n j/2

−
1
2

∑
0≤m≤(p j−1)/2

∑
m<

p j
n j
v<m+ 1

2

(
ω(v)

n j

)2
(dim W (n j )v + dim W (n j )n j−v)

−
1
2

∑
0≤m≤p j/2

∑
m− 1

2<
p j
n j
v<m

(
ω(−v)

n j

)2
(dim W (n j )v + dim W (n j )n j−v).

By using (2-23), (3-61), (3-62), and the explicit expressions of εi given in [Liu
et al. 2003, (4.56)–(4.57)], we know the functions in the first line of (3-60) are
independent on the connected components of F in M ′.

Now consider the functions in the rest of the lines of (3-60). By (2-30), (3-30),
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(3-32), (3-48) and [Liu et al. 2000, Lemma 4.5], we get

(3-63) d ′(p, β j , N )+µi+µ4≡
∑

0<m≤p j/2

∑
0<v<n j/2

m− 1
2<

pi
n j
v<m

dim N (n j )v+
1
2 dimR N (n j )

R
n j/2

+

∑
v>0

(dim Nv)
⌊ p j

n j
v+

1
2

⌋
+

∑
v>0

(dim Wv)
⌊ p j

n j
v+

1
2

⌋
+

∑
v<0

(dim Wv)
⌊
−

p j

n j
v+

1
2

⌋
+ o

(
N (n j )

R
n j/2

)
+1(n j ,W ) mod 2.

But, by [Liu et al. 2000, Lemma 4.5], as w2(W ⊕ TX)S1 = 0, we know that,
modulo 2,

(3-64)
∑
v>0

(dim Nv)
⌊ p j

n j
v+

1
2

⌋
+

∑
v>0

(dim Wv)
⌊ p j

n j
v+

1
2

⌋
+

∑
v<0

(dim Wv)
⌊
−

p j

n j
v+

1
2

⌋
+ o(N (n j )

R
n j/2)+1(n j ,W )

is independent on the connected components of F in M ′. Thus, the independence
on the connected components of F in M ′ of the functions in the second line of
(3-60) is proved, which, combined with [Liu et al. 2000, (4.42)], implies the same
independent property of the functions in the third line of (3-60). �

By (3-34)–(3-39) and Lemma 3.6, we know that the Dirac operator

DX (n j )⊗F(β j )⊗ F i
V (β j )⊗ QW (β j )⊗ L(β j )i

(i = 1, 2) is well-defined on M(n j ). Observe that (2-12) in Theorem 2.1 is compat-
ible with the G y-action. Thus, by using Proposition 3.7, Lemma 3.8 and applying
Theorem 2.1 to each connected component of M(n j ) separately, we deduce that,
for i = 1, 2, 1≤ j ≤ J0, m ∈ (1/2)Z, h ∈ Z, τ = τe1 or τs1,

(3-65)
∑
α

(−1)d
′(p,β j−1,N )+

∑
v>0 dim Nv Indτ

(
DYα ⊗ (KW ⊗ K−1

X )1/2

⊗Fp, j−1(X)⊗ F i
V ⊗ Q(W ),m+ e(p, β j−1, N ), h

)
=

∑
β

(−1)d
′(p,β j−1,N )+

∑
v>0 dim Nv+µ Indτ

(
DX (n j )⊗ (KW ⊗ K−1

X )1/2⊗F(β j )

⊗ F i
V (β j )⊗ QW (β j )⊗ L(β j )i ,m+ εi + ε

1
W + 2ε2

W +

(
p j

n j
+ (p− 1)

)
h, h

)
=

∑
α

(−1)d
′(p,β j ,N )+

∑
v>0 dim Nv Indτ

(
DYα ⊗ (KW ⊗ K−1

X )1/2⊗Fp, j (X)

⊗ F i
V ⊗ Q(W ),m+ e(p, β j , N ), h

)
,
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where
∑

β means the sum over all the connected components of M(n j ). In (3-65),
if τ = τs1, µ= µ3+µ4; if τ = τe1, µ= µi +µ4. Combining (3-55) with (3-65),
we get (2-28). The proof of Theorem 2.8 is complete.
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